Afleveringen

  • As AI reshapes industries and drives global innovation, the UK must urgently address its AI skills gap to remain competitive. Nations investing in AI education and training are gaining a clear advantage, leaving others at risk of falling behind. By equipping the workforce with essential AI expertise, the UK can strengthen its position as a leader in innovation and secure its economic future.

    Developing AI skills isn’t just about maintaining a competitive edge—it’s about creating opportunities. This dual approach ensures that experts can drive technological advancements while a broad understanding of AI empowers diverse sectors to integrate its potential. Investing in education, upskilling, and industry partnerships will ensure the UK workforce is ready to meet the demands of an AI-driven world. 

    In this episode, Paulina Rios Maya, Head of Industry Relations, speaks to James Kuht, CEO and Founder of Inversity, about integrating AI into education and the collaborative effort required from government and society to achieve this goal.

    Key Takeaways: 

    The UK has a strong AI talent pipeline concentrated in key areas.Specialist and generalist AI skills are both important.AI can significantly boost productivity in knowledge-based tasks.Teachers need training to effectively integrate AI into education.AI skills will be a baseline requirement for future jobs.Government and society must collaborate on AI education initiatives.AI has the potential to reduce economic inequality.Most jobs will evolve rather than disappear due to AI.

    Chapters: 

    00:00 - The Importance of AI Skills for the UK

    03:01 - James Kuht’s Journey in AI

    05:57 - Building a Competitive AI Workforce

    08:45 - Integrating AI into Education

    12:07 - The Role of Government and Society in AI Education

    15:01 - Addressing Inequality in AI Access

    17:58 - Future-Proofing the Workforce with AI Skills

    21:10 - The Impact of AI on Global Industries

  • AI operates in two primary environments: on-device and cloud-based. On-device AI processes data locally, ensuring privacy and speed by eliminating the need for internet connectivity. Cloud-based AI, on the other hand, leverages powerful remote servers to handle complex computations and large-scale data analysis, enabling more robust capabilities but often at the cost of latency and potential privacy concerns. 

    Apple Intelligence exemplifies the strengths of on-device AI, with innovations like Siri, Face ID, and real-time photo enhancements all designed to prioritise user privacy while delivering seamless, responsive experiences.  Unlike cloud-based AI, which may send sensitive data to external servers for processing, Apple’s approach ensures that personal information stays on the user’s device and is protected by advanced encryption. This difference builds trust and empowers users with faster, more reliable interactions. 

    In this episode, Paulina Rios Maya, Head of Industry Relations, speaks to Karel Callens, CEO at Luzmo, about best practices for developers integrating AI into their products. 

    Key Takeaways:

    Apple Intelligence operates on-device but can access cloud resources.Developers must implement robust security measures for user data.Clear data policies enhance user trust in AI solutions.Opt-in and opt-out options empower users regarding their data.Education on AI usage is crucial for consumer confidence.Shared security standards can mitigate AI misuse.Regulation is necessary to keep pace with AI advancements.Big tech companies have a responsibility to ensure ethical AI use.

    Chapters:

    00:00 - Introduction to AI: On-Device vs Cloud-Based

    02:54 - Understanding Apple Intelligence and Its Benefits

    05:47 - Security Measures in AI Integration

    09:03 - Building Trust Through Transparency and Regulation

    11:50 - Best Practices for Developers in AI Implementation

    15:04 - The Role of Education in AI Trust and Security

    17:47 - The Future of AI: Regulation and Responsibility

  • Zijn er afleveringen die ontbreken?

    Klik hier om de feed te vernieuwen.

  • AI Personas are the cornerstone of how these systems interact with users, delivering tailored and engaging experiences. These personas—crafted from user research, behavioural insights, and cultural contexts—help define an AI's tone, style, and decision-making approach. Whether it’s a friendly virtual assistant or a professional customer service bot, personas ensure that AI systems resonate with their audiences while maintaining a consistent identity. 

    However, developing personas for AI isn’t without its challenges. Ensuring that AI responses remain appropriate, ethical, and unbiased while preserving a unique persona requires careful consideration. From avoiding stereotypes to addressing edge cases, the process demands robust testing and a clear understanding of how diverse user interactions can unfold. 

    When personas fail to account for the complexity of real-world scenarios, the risk of inappropriate or harmful responses increases. By combining creative storytelling with ethical AI design principles, organisations can navigate these challenges and build AI systems that are engaging and responsible in their behaviour.

    In this episode, Paulina Rios Maya, Head of Industry Relations, speaks to Cobus Greyling, Chief Evangelist at Kore.ai, about the influence of cultural norms and value systems on AI and strategies for maintaining control over AI behaviour. 

    Key Takeaways: 

    Personas in AI shape user interactions and trust.Cultural norms influence AI decision-making processes.Balancing control and agency is crucial for effective AI.Adversarial attacks can undermine AI reliability.Transparency is essential for user confidence in AI.Organisations should not offload too much responsibility to AI.AI should enhance human creativity, not replace it.Proof of value is necessary for AI technology implementation.

    Chapters:

    00:00 - Introduction to AI Personas and Their Impact

    02:34 - The Role of Personas in AI Behavior

    05:51 - Challenges in Ensuring Appropriate AI Responses

    09:07 - Cultural Norms and Value Systems in AI

    10:30 - Balancing Control and Agency in AI

    14:14 - Strategies for Maintaining Control Over AI Behavior

    21:24 - The Importance of Responsibility in AI Usage

  • Low-code and no-code platforms are revolutionising application development by empowering technical and non-technical users to quickly and efficiently build powerful applications. These platforms provide intuitive visual interfaces and pre-built templates that enable users to create complex workflows, automate processes, and deploy applications without writing extensive lines of code. 

    By simplifying development, low-code and no-code tools open up software creation to a wider range of contributors, from professional developers looking to accelerate delivery times to business users aiming to solve specific problems independently. This democratisation of development reduces the demand for IT resources and fosters a culture of innovation and agility within organisations.

    The impact of low-code and no-code technology extends beyond just speed and accessibility; it’s transforming how businesses adapt to change and scale their digital solutions. These platforms allow companies to quickly respond to evolving customer needs, regulatory requirements, and competitive pressures without the lengthy timelines associated with traditional development cycles. 

    In this episode, Paulina Rios Maya, Head of Industry Relations, speaks to Michael West, Analyst at Lionfish Tech Advisors about LCNC platforms and their benefits. 

    Key Takeaways:

    Low-code and no-code platforms enable business solutions without coding.These platforms broaden the developer base to include non-technical users.Choosing the right platform involves considering functionality, standards, and vendor viability.Low-code platforms can handle enterprise-level applications effectively.AI integration is transforming how applications are developed.Democratisation of development addresses the shortage of professional developers.The market for low-code and no-code platforms is rapidly evolving.Future trends will focus on AI capabilities and user experience.

    Chapters: 

    00:00 Introduction to Low-Code and No-Code Platforms

    02:59 The Evolution of Development Roles

    05:49 Key Considerations for Adopting LCNC Tools

    09:04 Democratizing Development and Innovation

    11:59 Future Trends in Low-Code and No-Code Markets

  • The intersection of cryptography and GPU programming has changed the face of secure data processing, making methods for encryption and decryption much faster and more efficient than ever imagined. Cryptography is the science of encrypting data with intricate algorithms initially designed to operate on very intensive computational powers. GPU programming provides the ability to utilise parallel processing of graphics processing units in cryptographic processes so they perform with unmatched speed. 

    While continuously evolving, GPUs are furnishing the computational muscle to execute ever-higher-level cryptographic algorithms without performance penalties. Developers now fully avail of the power of GPU parallelism to perform several thousand encryption tasks simultaneously, which is difficult for traditional CPUs to keep up with. This efficiency is critical in this growing data and rising cyber threat era, where organisations need rapid encryption and robust security. 

    In this episode, Paulina Rios Maya, Head of Industry Relations, speaks to Agnes Leroy, Senior Software Engineer at Zama, about the significance of encryption in high-stakes industries, the role of women in tech and the importance of mentorship in overcoming barriers in the industry.

    Key Takeaways: 

    GPUs have evolved from graphics rendering to critical roles in data security.Fully homomorphic encryption allows computations on encrypted data.Quantum-resistant methods are crucial for future-proofing encryption.High-stakes industries require robust encryption to protect sensitive data.Diverse environments in tech foster innovation and collaboration.The future of encryption technology is exciting and unpredictable.

    Chapters: 

    00:00 - Introduction to Cryptography and GPU Programming

    01:08 - The Evolution of GPUs in Data Security

    03:33 - Challenges in Traditional vs Modern Encryption

    05:50 - Quantum Resistance in Encryption Techniques

    07:40 - The Future of GPUs in Data Privacy

    08:38 - Importance of Encryption in High-Stakes Industries

    10:00 - Potential Applications of Fully Homomorphic Encryption

    11:42 - Women in Tech: Overcoming Barriers

    15:33 - Conclusion and Resources

  • LLMs and AI have increasingly become major contributors to transforming content creation today. Understanding and using prompt skills appropriately can help organisations optimise AI to generate high-quality content efficiently. 

    While AI offers multiple benefits, it's important to acknowledge the potential risks associated with its implementation. Organisations are advised to carefully consider factors such as data privacy, bias, and the ethical implications of AI-generated content. 

    In this episode, Paulina Rios Maya, Head of Industry Relations, speaks to Prof. Yash Shreshta, Assistant Professor at the University of Laussane, about prompt engineering and its benefits. 

    Key Takeaways

    Prompts are commands given to AI to perform tasks.Prompt engineering allows users to communicate effectively with AI.Iterative processes improve the quality of AI outputs.Understanding LLM limitations is crucial for effective use.Collaboration can enhance the creative process with AI.The role of prompt engineering is rapidly evolving with AI advancements.Data privacy is a significant risk when using LLMs.Over-reliance on AI can lead to skill degradation.Organisations should integrate human creativity with AI.Regular training on prompt engineering is essential for maximising LLM benefits.

    Chapters

    00:00 Introduction to Prompt Engineering and AI

    01:30 Understanding Prompt Engineering

    04:15 The Importance of Prompt Engineering Skills

    06:37 Best Practices for Effective Prompts

    08:31 The Evolving Role of Prompt Engineering

    11:20 Risks and Challenges of AI in Organizations

    13:15 The Future of Creativity with AI

  • The fraud division has witnessed a dramatic transformation in the age of artificial intelligence (AI). As technology advances, so do the methods employed by fraudsters. Modern criminals use sophisticated techniques, such as deep learning and natural language processing, to deceive individuals and organisations alike. Such techniques allow them to mimic human behaviour, manipulate data, and exploit vulnerabilities in security systems.

    That’s why organisations are embracing AI's strengths to combat these evolving threats. AI-driven solutions can provide real-time detection of fraudulent activities, analyse vast amounts of data to identify patterns and anomalies, and automate response processes. 

    In this episode, Paulina Rios Maya, Head of Industry Relations, speaks to Xavier Sheikrojan, Senior Risk Intelligence Manager at Signifyd, about AI fraud. 

    Key Takeaways:

    Fraudsters have evolved from individuals to organised criminal enterprises.AI enables fraudsters to scale their attacks rapidly and strategically.Phishing attacks have become more sophisticated with AI-generated content.Synthetic identities can be created easily, complicating fraud prevention.Opportunistic fraud is impulsive, while proactive fraud is well-planned.Businesses often fail to act post-breach due to resource constraints.Inaction after a breach can lead to repeated attacks by fraudsters.AI must be used to combat AI-driven fraud effectively.Balancing fraud detection with customer experience is crucial for businesses. 

    Chapters:

    00:00 Introduction to AI and Fraud

    01:32 The Evolution of Cybercrime

    05:43 AI's Role in Modern Fraud Techniques

    09:55 Opportunistic vs. Proactive Fraud

    12:44 Business Inaction and Its Consequences

    15:59 Combating AI-Driven Fraud with AI

  • As AI technologies become more integrated into business operations, they bring opportunities and challenges. AI’s ability to process vast amounts of data can enhance decision-making but also raise concerns about data privacy, security, and regulatory compliance. 

    Ensuring that AI-driven systems adhere to data protection laws, such as GDPR and CCPA, is critical to avoid breaches and penalties. Balancing innovation with strict compliance and robust data security measures is essential as organisations explore AI’s potential while protecting sensitive information.

    In this episode, Paulina Rios Maya, Head of Industry Relations, speaks to Erin Nicholson, Global Head of Data Protection and AI Compliance at Thoughtworks, about the importance of compliance frameworks, best practices for transparency and accountability, and the need for collaboration among various teams to build trust in AI systems.

    Key Takeaways:

    AI systems are powerful but require ethical and compliant design.Lack of standardisation in AI regulations poses significant challenges.AI models often need help with explainability and transparency.Compliance frameworks are essential for implementing AI in critical sectors.Documentation and audits are crucial for maintaining AI accountability.Baselining pre-AI processes helps build public trust in AI systems.Organisations should map regulations to the most stringent standards.Cross-functional collaboration is vital for effective AI compliance.

    Chapters: 

    00:00 - Introduction to AI, Data Protection, and Compliance

    02:08 - Challenges in AI Implementation and Compliance

    05:56 - The Role of Compliance Frameworks in Critical Sectors

    10:31 - Best Practices for Transparency and Accountability in AI

    14:48 - Navigating Regional Regulations for AI Compliance

    17:43 - Collaboration for Trustworthiness in AI Systems

  • As organisations increasingly migrate to cloud environments, they face a critical challenge: ensuring the security and privacy of their data. 

    Cloud technologies offer many benefits, including scalability, cost savings, and flexibility. However, they also introduce new risks, such as potential data breaches, unauthorised access, and compliance issues. 

    With sensitive data stored and processed off-premises, maintaining control and visibility over that data becomes more complex. As cyber threats continue to evolve, robust data protection strategies are essential to safeguarding information in the cloud.

    In this episode, Paulina Rios Maya, Head of Industry Relations, speaks to Sergei Serdyuk, VP of Product Management at NAKIVO, about the factors driving cloud adoption, the importance of having a robust disaster recovery plan, best practices for data protection, and the challenges of ensuring compliance with regulations.

    Key Takeaways: 

    Cloud adoption is accelerated by low barriers to entry.Scalability in cloud environments is easier than on-premises.Data in the cloud is vulnerable and needs protection.The shared responsibility model places data protection on the user.A comprehensive disaster recovery plan is crucial for businesses.Regular testing of disaster recovery plans is essential.Data protection strategies must include regular reviews and updates.Compliance with data protection regulations is complex and varies by region.Balancing security and operational efficiency is a key challenge.

    Chapters: 

    00:00 - Introduction to Cloud Technologies and Data Protection

    01:26 - Factors Accelerating Cloud Adoption

    03:48 - The Importance of Data Protection in the Cloud

    06:39 - Developing a Comprehensive Disaster Recovery Plan

    10:05 - Best Practices for Data Protection

    13:31 - Ensuring Compliance in Cloud Environments

    15:56 - The Role of Continuous Monitoring in Data Protection

    18:19 - Balancing Security and Operational Efficiency

  • Managed Service Providers (MSPs) are evolving beyond traditional IT support, becoming strategic partners in driving business growth. By embracing AI technologies, MSPs are improving operational efficiency, streamlining service delivery, and offering smarter solutions to meet modern challenges.

    As businesses navigate digital transformation, MSPs are crucial in optimising IT infrastructure, enhancing security, and providing tailored solutions that fuel innovation. With AI-powered tools, MSPs meet today's demands and help businesses stay competitive. 

    In this episode, Paulina Rios Maya, Head of Industry Relations, speaks to Jason Kemsley, Co-founder and CRO of Uptime, about the proactive strategies that MSPs can adopt using AI, the challenges they face in implementation, and the ethical considerations surrounding AI solutions.

    Key Takeaways:

    MSPs are transitioning from traditional IT support to strategic partners.AI is enhancing operational efficiency but not replacing human roles.Proactive support is often neglected due to resource constraints.AI can help MSPs predict and prevent IT issues.Challenges in adopting AI include unrealistic expectations and lack of accountability.There is potential for MSPs to develop their own AI tools.

    Chapters:

    00:00 - Introduction to Managed Service Providers (MSPs)

    02:03 - The Evolving Role of MSPs in Business Growth

    04:00 - AI's Impact on Service Delivery Models

    07:22 - Proactive Support Strategies with AI

    10:16 - Challenges in Adopting AI for MSPs

    12:40 - Ethics and Accountability in AI Solutions

  • Trusted AI ensures that people, data, and AI systems work together transparently to create real value. This requires a focus on performance, innovation, and cost-effectiveness, all while maintaining transparency. However, challenges such as misaligned business strategies and data readiness can undermine trust in AI systems. 

    To build trusted AI, it’s crucial to first trust the data. A robust data platform is essential for creating reliable and sustainable AI systems. Tools like Teradata’s ClearScape Analytics help address concerns about AI, including issues like generative AI hallucinations, by providing a solid foundation of trusted data and an open, connected architecture.

    In this episode, Doug Laney, Analytics Strategy Innovation Fellow with West Monroe Partners, speaks to Vedat Akgun, VP of Data Science & AI and Steve Anderson, Senior Director of Data Science & AI at Teradata, about trusted AI. 

    Key Takeaways:

    Value creation, performance, innovation, and cost-effectiveness are crucial for achieving trusted AI.Trusting data is essential before building AI capabilities to avoid biases, inaccuracies, and ethical violations.A robust data platform is a foundation for creating trusted and sustainable AI systems.Generative AI raises concerns about hallucinations and fictitious data, highlighting the need for transparency and accountability.Teradata offers features and capabilities, such as ClearScape Analytics and an open and connected architecture, to address trust issues in AI.

    Chapters:

    00:00 - Introduction and Defining Trusted AI

    01:33 - Value Creation and the Importance of Driving Business Value

    03:27 - Transparency as a Principle of Trusted AI

    09:00 - Trusting Data Before Building AI Capabilities

    14:51 - The Role of a Robust Data Platform in Trusted AI

    21:09 - Concerns about Trust in Generative AI

    23:03 - Addressing Trust Issues with Teradata's Features and Capabilities

    25:01 - Conclusion

  • Balancing transparency in AI systems with the need to protect sensitive data is crucial. Transparency helps build trust, ensures fairness, and meets regulatory requirements. However, it also poses challenges, such as the risk of exposing sensitive information, increasing security vulnerabilities, and navigating privacy concerns.

    In this episode, Paulina Rios Maya, Head of Industry Relations, speaks to Juan Jose Lopez Murphy, Head of Data Science and Artificial Intelligence at Globant, to discuss the ethical implications of AI and the necessity of building trust with users. 

    Key Takeaways:

    Companies often prioritise speed over transparency, leading to ethical concerns.The balance between transparency and protecting competitive data is complex.AI misuse by malicious actors is a growing concern.Organisations must educate users on digital literacy to combat misinformation.Confidently wrong information is often more trusted than qualified uncertainty.

    Chapters

    00:00 - Introduction to AI Transparency

    03:03 - Balancing Transparency and Data Protection

    05:57 - Navigating AI Misuse and Security

    09:05 - Building Trust Through Transparency

    12:03 - Strategies for Effective AI Governance

  • As organisations adopt AI, data literacy has become more critical than ever. Understanding data—how it's collected, analysed, and used—is the foundation for leveraging AI effectively. Without strong data literacy, businesses risk making misguided decisions, misinterpreting AI outputs, and missing out on AI’s transformative benefits. By fostering a data-driven culture, teams can confidently navigate AI tools, interpret results, and drive smarter, more informed strategies.

    Ready to boost your data literacy and embrace the future of AI?

    Key Takeaways: 

    Companies are optimistic about ROI from AI investments.Data literacy is crucial for effective AI implementation.Technical debt poses challenges for AI infrastructure.Data quality and governance are essential for AI success.Trust in AI systems is a growing concern.Organizations must start with clear business priorities.The Data Festival will provide practical insights for AI adoption.

    DATA festival is where theory meets practice to create real, actionable knowledge. This event brings together #DATApeople eager to drive the realistic applications of AI in their fields.

    Leaving the hype behind, we look at the actual progress made in applying (Gen)AI to real-world problems and delve into the foundations to understand what it takes to make AI work for you. We’ll discuss when, where and how AI is best applied, and explore how we can use data & AI to shape ourfuture.

    Sign up now to secure your spot

  • Data labelling is a critical step in developing AI models, providing the foundation for accurate predictions and smart decision-making. Labelled data helps machine learning algorithms understand input data by assigning meaningful tags to raw data—such as images, text, or audio—ensuring that AI models can recognise patterns and make informed decisions. 

    AI models struggle to learn and perform tasks effectively without high-quality labelled data. Proper data labelling enhances model accuracy, reduces errors, and accelerates the time it takes to train AI systems. Whether you're working with natural language processing, image recognition, or predictive analytics, the success of your AI project hinges on the quality of your labelled data.

    In this episode, Henry Chen, Co-founder and COO of Sapien, speaks to Paulina Rios Maya about the importance of data labelling in training AI models. 

    Key Takeaways:

    Data labelling converts raw data into structured data that machine learning models can recognise.Reducing bias and ensuring data quality are critical challenges in data labelling.Expert human feedback plays a crucial role in improving the accuracy of AI training data and refining AI models.

    Chapters:

    00:00 - Introduction and Background

    01:07 - Data Labeling: Converting Raw Data into Useful Data

    03:02 - Challenges in Data Labeling: Bias and Data Quality

    07:46 - The Role of Expert Human Feedback

    09:41 - Ethical Considerations and Compliance

    11:09 - The Evolving Nature of AI Models and Continuous Improvement

    14:50 - Strategies for Updating and Improving Training Data

    17:12 - Conclusion

  • Traditional KYC processes are inadequate against modern fraud tactics. While KYC helps with initial identity checks, it doesn't cover evolving threats like AI-generated deepfakes or ongoing account takeovers. 

    Curious about how to protect your business from the latest threats like fake IDs, account takeovers, and AI-generated deep fakes? Tune in to our latest episode, where we dive into the essentials of full-cycle verification and real-time transaction monitoring. Find out how AI and machine learning can revolutionise your fraud detection efforts and why staying updated with regulatory changes is crucial for maintaining top-notch security. 

    In this episode of Tech Transformed, Alvaro Garcia, Transaction Monitoring Technical Manager at Sumsub, speaks to Paulina Rios Maya, Head of Industry, about the manifestations of identity fraud during the user journey stages and the need for comprehensive fraud prevention measures.

    Key Takeaways:

    Identity fraud manifests at different user journey stages, including onboarding and transaction monitoring.Businesses must implement full-cycle verification and transaction monitoring solutions to detect and prevent fraud in real time.AI and machine learning are crucial in analyzing suspicious user behaviour and spotting complex fraud patterns.SumSub offers platform solutions that include KYC, business verification, transaction monitoring, and payment fraud protection.

    Chapters: 

    00:00 - Introduction and Overview

    00:35 - Identity Fraud in the User Journey

    02:01 - Types of Fraud and Fraud Prevention

    04:20 - Real-Time Monitoring and Enhancing Systems

    05:46 - Common Types of Fraud Faced by Financial Institutions

    08:40 - The Challenge of AI-Generated Deepfakes

    10:04 - Beyond KYC: Additional Measures for Fraud Prevention

    12:29 - Prevention Measures and Synthetic Identity Fraud

    15:21 - Effective Fraud Prevention Solutions

    17:45 - Assessing the Effectiveness of Fraud Prevention Strategies

    19:08 - Staying Up to Date with Regulatory Requirements

    21:31 - Conclusion

  • AI is revolutionising contact centres by automating routine tasks, reducing response times, and enhancing customer experience. AI is built to handle simple inquiries efficiently and at scale. 

    It helps contact centres close the gap between customer expectations and conventional customer service by enabling engagement through digital channels. AI-driven analytics improve decision-making by capturing and analysing data from customer interactions. Organisations can overcome challenges by starting small and gradually building trust in AI's capabilities. 

    In this episode, Paulina Rios Maya, Head of Industry Relations at EM360 speaks to Jon Arnold, Principal at J Arnold & Associates about the use of AI in contact centres. 

    Key Takeaways:

    AI is a transformative technology that rethinks customer engagement and addresses customer problems in contact centres.AI enables engagement through digital channels and helps contact centres close the gap between customer expectations and conventional customer service.AI-driven analytics improve decision-making by capturing and analysing data from customer interactions.Organisations can overcome challenges by starting small and gradually building trust in AI's capabilities.AI helps protect privacy and mitigate fraud in contact centres.

    Chapters:

    00:00 - Introduction and Overview

    01:06 - The Transformational Power of AI in Contact Centers

    03:00 - Automating Routine Tasks and Enhancing Customer Experience

    06:24 - Engaging Customers through Digital Channels

    11:09 - Improving Decision-Making with AI-Driven Analytics

    15:28 - Overcoming Challenges and Building Trust in AI

    17:23 - Protecting Privacy and Mitigating Fraud in Contact Centers


  • Join us in this exciting episode of Tech Transformed, where we talk to Kelly Vero, a pioneering game developer, digital leader, and visionary in the metaverse. With a career spanning 30 years and a resume that includes contributions to legendary franchises like Tomb Raider and Halo 3, Kelly brings a wealth of knowledge and experience to the table.  

    Kelly’s unique journey in the tech world is nothing short of extraordinary. From joining the military to learn about ballistics for Halo 3 to founding the award-winning startup NAK3D, she has always pushed the boundaries of what’s possible. 

    Kelly Vero speaks to Paulina Rios Maya about the hurdles of being a woman in the tech industry, the principles of gamification, and the overhyped trends in AI and NFTs. They discuss what’s genuinely beneficial versus what’s just noise.

    Key Takeaways: 

    The gaming industry offers opportunities for problem-solving and creativity.Role models can come from everyday people who inspire and support others.Gamification is about creating an engaging user experience that encourages return and contribution.The tech industry has seen beneficial changes in globalized platforms and a focus on quantum solutions.

    Chapters: 

    00:00 - Introduction and Background

    02:28 - The Gaming Industry and Problem Solving

    07:36 - Challenges and Role Models in the Tech Industry

    11:54 - The Principles and Ethical Considerations of Gamification

    18:30 - Beneficial Changes and Overhype in the Tech Industry

    20:25 - Creating Digital Objects and the NFT Standard

    23:45 - Introducing NAK3D: Bringing Non-Designers into Design

  • Strategic choices with significant implications mark Latin America's approach to AI. Many countries in the region have adopted AI technologies and frameworks developed by leading tech nations, focusing on imitation rather than innovation. This strategy enables rapid deployment and utilisation of advanced AI solutions, bridging the technological gap and fostering economic growth. 

    However, reliance on external innovations raises questions about the region's long-term competitiveness and ability to contribute original advancements to the global AI landscape.

    In this podcast, Alejandro Leal, Analyst at KuppingerCole, speaks to Paulina Rios Maya, Head of Industry Relations, about how socio-economic factors, including limited research funding, infrastructural challenges, and the need for quick technological catch-up drive this pattern of imitation. While this approach has led to swift AI adoption, it underscores a dependence on foreign technologies and expertise.

    Key Takeaways: 

    Trust, ethics, and legal considerations are essential challenges in integrating AI into the security infrastructure.Public-private partnerships and regional cooperation are crucial for advancing AI technology in the region.Interoperability and alignment with international and regional standards are key areas of focus to ensure the ethical use of AI in Latin America.

    Chapters:

    00:00 - Introduction: AI in Latin America

    00:58 - Key Initiatives in the Security Sector in Mexico

    05:12 - Mexico's Evolution in National Security

    07:33 - Challenges in Integrating AI into Security Infrastructure

    12:40 - Comparison with Other Latin American Countries

    19:26 - The Role of Public-Private Partnerships

    22:51 - Focus on Interoperability and Alignment with Standards

    23:46 - Conclusion: Ethical Use of AI in Latin America

  • AI fraud is not just a concern, it's a pressing issue. As artificial intelligence technologies advance, fraudsters are developing increasingly sophisticated methods to exploit these systems. Typical forms of AI fraud include deepfakes, which use AI to create convincing fake images, audio, or videos for disinformation, blackmail, or identity theft, and advanced phishing schemes that leverage AI to craft highly personalized and deceptive messages. Addressing and understanding AI fraud is not just crucial, it's urgent for individuals, businesses, and governments to protect against these evolving threats. 

    Join Alejandro Leal and Pavel Goldman-Kalaydin, Head of AI and Machine Learning at Sumsub, as they delve into the growing issue of AI fraud.

    Themes:

    AI fraudDeepfakesGlobal trendsRegulation

    Chapters:

    00:00 - Introduction and Background

    01:13 - Understanding AI Fraud

    02:11 - Examples of AI-Driven Fraud

    08:02 - Global Trends in AI-Driven Fraud

    13:55 - Preventing AI-Driven Fraud

    18:11 - The Future Evolution of AI Fraud

    22:38 - Conclusion and Final Thoughts

  • While generative AI and large language models often receive inflated acclaim, their true value is found in harnessing intelligence and data-driven insights. 

    Despite the hype, AI has its shortcomings, such as large language models sometimes being solutions looking for problems and challenges in understanding its impact on advertising and making savvy investment decisions.

    In this podcast, Dana Gardner, President & Principal Analyst of Interarbor Solutions, and Paulina Rios Maya, Head of Industry Relations at EM360Tech, discuss why AI should be seen as a transformational technology rather than just another automation tool. 

    Key Takeaways

    AI should be viewed as a transformational technology that can refactor our actions rather than just an automation tool.Large language models may be a solution in search of a problem, and their high costs and sustainability impacts should be considered.Making informed decisions about AI investments requires considering the potential benefits and costs.

    Chapters

    00:00 - The Current State of AI Development

    02:17 - Viewing AI as a Transformational Technology

    03:45 - The Limitations of Large Language Models

    05:40 - The Impact of AI on Advertising

    06:37 - Navigating the Complexities of AI Investments